Системы возбуждения синхронных генераторов: разновидности, схемы, достоинства и недостатки

Системы возбуждения синхронных генераторов Все турбогенераторы, гидрогенераторы, дизель-генераторы, синхронные компенсаторы и двигатели, изготавливаемые в настоящее время, оснащаются современными полупроводниковыми системами возбуждения – рис.5.2 – 5.7. В этих системах используется принцип выпрямления трехфазного переменного тока повышенной или промышленной частоты возбудителей или напряжения возбуждаемой машины.

Электромашинные системы возбуждения (рис.5.1), выпускавшиеся заводами более 30 лет назад и находящиеся до сих пор в эксплуатации, могут быть заменены на современные полупроводниковые статические системы с любым набором заданных функций.

Системы возбуждения обеспечивают следующие режимы работы синхронных машин:

  1. начальное возбуждение;
  2.  холостой ход;
  3. включение в сеть методом точной синхронизации или самосинхронизации;
  4. работу в энергосистеме с допустимыми нагрузками и перегрузками;
  5. форсировку возбуждения по напряжению и по току с заданной кратностью;
  6. разгрузку по реактивной мощности и развозбуждение при нарушениях в энергосистемах;
  7. гашение поля генератора в аварийных режимах и при нормальной остановке;
  8. электрическое торможение агрегата.

Система независимого возбуждения с возбудителем постоянного тока

Рис.5.1. Система независимого возбуждения с возбудителем постоянного тока.
КК – контактные кольца, Rсс и КСС – сопротивление и контактор самосинхронизации, РВ – резервный возбудитель, АГП – автомат гашения поля, АГПВ – автомат гашения поля возбудителя, Rр – регулировочный реостат, Rд и Rгасв – резисторы добавочный и гасительный в цепи ОВВ, ДОВВ – добавочная обмотка возбуждения возбудителя.

Для оснащения турбо- и гидрогенераторов выпускается три типа систем возбуждения:
• системы тиристорные независимые (СТН) – рис.5.2;
• системы тиристорные самовозбуждения (СТС) – рис.5.3;
• системы бесщеточные диодные (СБД) – рис.5.4


Системы тиристорного независимого возбуждения (СТН)

Системы тиристорные независимые (СТН) предназначены для питания обмотки возбуждения крупных турбо- и гидрогенераторов выпрямленным регулируемым током, применяемые при выработке электроэнергии на ГЭС и других генерирующих станциях – рис.5.2.

Абрамян Евгений Павлович
Абрамян Евгений Павлович
Доцент кафедры электротехники СПбГПУ
В отличие от систем самовозбуждения (СТС), в СТН тиристорные выпрямители главного генератора получают питание от независимого источника напряжения переменного тока промышленной частоты – от вспомогательного синхронного генератора, вращающемся на одном валу с главным генератором

 

Система тиристорная независимая (СТН)

Рис.5.2. Система тиристорная независимая (СТН) с возбудителем переменного тока и двумя группами тиристоров, в сочетании со схемой резервного возбуждения от двухмашинного агрегата асинхронный двигатель-возбудитель постоянного тока. В – возбудитель (вспомогательный генератор) переменного тока, ОВВ обмотка возбуждения возбудителя, ВРГ, ВФГ – тиристорные вентили рабочей и форсировочной групп, ВВВ – тиристорные вентили выпрямителя возбудителя, СУВРГ, СУВФГ, СУВВВ – системы управления вентилями соответствующих групп, ВТВ – выпрямительный трансформатор возбудителя, ТСНВ – трансформатор СН тиристорных выпрямителей.

Вспомогательный генератор переменного тока возбуждения построен по схеме самовозбуждения. СТН обладает важным преимуществом – её параметры не зависят от процессов, протекающих в энергосистеме.

Васильев Дмитрий Петрович
Васильев Дмитрий Петрович
Профессор электротехники СПбГПУ
Благодаря наличию вспомогательного генератора, сохраняется независимость возбуждения от длительности и удаленности КЗ и других возмущений в энергосистеме, и высокая скорость нарастания напряжения возбуждения: не более 25 мс до достижения максимального значения при уменьшении напряжения прямой последовательности в точке регулирования на 5%.

В системе СТН обеспечивается быстрое снятие возбуждения за счет изменения полярности напряжения возбуждения: время развозбуждения от максимального положительного до отрицательного минимального напряжения возбуждения не превышает 100 мс.

Система тиристорного самовозбуждения (СТС)
Рис.5.3. Система тиристорного самовозбуждения (СТС) с выпрямительным трансформатором (ВТ) и двумя группами тиристоров. ТСНР, ТСНФ – трансформаторы СН тиристорных выпрямителей рабочей и форсировочной групп.

В системе СТН выпрямленное номинальное напряжение может составлять 700 В, а выпрямленный номинальный ток – до 5500А. Кратности форсировки по напряжению и току составляют не менее двух единиц, а длительность форсировки – от 20 до 50 с. Точность поддержания напряжения генератора – не хуже ±0,5% и до ±1%. Система охлаждения тиристорного выпрямителя в системах СТН и СТС может быть принудительно воздушной, естественной воздушной или водяной.

Система тиристорного самовозбуждения (СТС)

Система тиристорного самовозбуждения (СТС) предназначена для питания обмоток возбуждения турбо и гидрогенераторов выпрямленным регулируемым током – рис.5.3.
Питание тиристорного выпрямителя осуществляется через трансформатор, подключенный к генераторному токопроводу. Для запуска генератора предусмотрена цепь начального возбуждения, которая автоматически формирует кратковременный импульс напряжения на обмотке ротора до появления ЭДС обмотки статора генератора. Импульс напряжения достаточен для поддержания устойчивой работы тиристорного преобразователя в цепи самовозбуждения. Питание цепей начального возбуждения осуществляется как от источника переменного тока, так и от станционной аккумуляторной батареи.

В системе СТС выпрямленное номинальное напряжение составляет до 500 В, а выпрямленный номинальный ток – не более 4000 А, т.е. эти значения несколько ниже, чем в системах СТН.

Благодаря высокому быстродействию управляемого выпрямителя и предельным уровням напряжения и тока возбуждения в сочетании с эффективными законами управления система СТС обеспечивает высокое качество регулирования и большие запасоустойчивости энергосистем. По этим показателям система СТС соответствует значениям системы СТН.

Абрамян Евгений Павлович
Абрамян Евгений Павлович
Доцент кафедры электротехники СПбГПУ
В системе СТН интенсивное гашение поля генераторов в нормальных условиях эксплуатации достигается за счет перевода тиристорного преобразователя в инверторный режим изменением полярности напряжения возбуждения – время развозбуждения не превышает 100 мс.

Экстренное снятие возбуждения в аварийных режимах обеспечивается автоматом гашения поля – электрическим аппаратом специальной конструкции, который при срабатывании производит оптимальное гашение поля генератора (АГП).

Система бесщеточная диодная (СБД)

Рис.5.4. Система бесщеточная диодная (СБД) независимого возбуждения: а – с подвозбудителем (ПВ), б – без подвозбудителя, с питанием обмотки возбуждения возбудителя (ОВВ) от выпрямительного трансформатора (ВТ). ДВ – вращающиеся диодные вентили.

Орлов Анатолий Владимирович
Орлов Анатолий Владимирович
Начальник службы РЗиА Новгородских электрических сетей
Действие АГП заключается в уменьшении времени гашения поля при соблюдении предельно допустимой по условиям электрической прочности изоляции величины напряжения на обмотке возбуждения. Защита ротора от перенапряжений выполняется на основе быстродействующих тиристорных разрядников.

Учитывая высокую надежность тиристорных выпрямителей и улучшение их параметров по токам и напряжениям, в схемах возбуждения могут применяться вместо двух групп вентилей (ВРГ, ВФГ) одну группу с необходимой кратностью форсировки – рис.5.5.

Система тиристорного самовозбуждения резервная (СТСР)

В схемах рис.5.1, 5.2, 5.3 благодаря наличию контактных колец на роторе можно использовать систему резервного возбуждения. В прежних системах использовался двухмашинный агрегат из асинхронного двигателя, соединенного с генератором постоянного тока. Асинхронный двигатель получал питание от шин собственных нужд и был общим для нескольких генераторов.

В современной системе тиристорного самовозбуждения резервной (СТСР) использован принцип тиристорного выпрямления от разделительного трансформатора, также присоединенного к системе собственных нужд станции.

Назначение этих систем – питание обмотки ротора синхронной машины в случаях, когда основная система вследствие неисправности или технического обслуживания выведена из работы. На электростанциях устанавливают одну резервную систему на группу генераторов. На многих станциях продолжают использовать двухмашинные агрегаты, питаемые от шин собственных нужд. Более совершенной является статическая система СТСР, представляющая собой мощный регулируемый источник постоянного тока. Система оснащена всеми необходимыми средствами защиты, управления и коммутации.

Системы бесщеточные диодные (СБД)

Системы бесщеточные диодные (СБД) предназначены для питания обмотки возбуждения турбогенераторов выпрямленным регулируемым током – рис.5.4а,б.
Бесщеточный возбудитель представляет собой синхронный генератор обращенного исполнения, якорь которого с обмоткой переменного тока и диодным выпрямителем жестко соединен с ротором возбужденного турбогенератора. Обмотка возбуждения возбудителя расположена на его статоре.

Главное достоинство бесщеточных возбудителей состоит в отсутствии контактных колец и щеточного контакта в цепи обмотки ротора турбогенератора и в сокращении длины машины.

Абрамян Евгений Павлович
Абрамян Евгений Павлович
Доцент кафедры электротехники СПбГПУ
Это позволяет обеспечить возбуждение сверхмощных машин, токи возбуждения которых превышают 5500А, свойственных системе СТН – рис.5.2. Выпрямленное номинальное напряжение составляет до 600В, а выпрямленный номинальный ток до 7800А. Система охлаждения вращающегося диодного выпрямителя – естественная воздушная.

Регулирование возбуждения генератора осуществляется путем управления током обмотки возбуждения обращенного возбудителя. Типовой комплект системы включает в себя автомат гашения поля, тиристорный разрядник и два преобразовательно-регулирующих канала (AVR-1, AVR-2) автоматических регуляторов возбуждения основного и резервного каналов соответственно. Один из каналов (AVR-1) находится в активном режиме, другой (AVR-2) – в горячем резерве. В частном случае основной канал регулирования получает питание от выпрямительного трансформатора, подключенного к генераторному токопроводу, а резервный – через выпрямительный трансформатор от шин собственных нужд электростанции.

Система бесщеточная диодная (СБД)

Рис.5.5. Система бесщеточная диодная (СБД) с тиристорным возбуждением (ТВ-1, ТВ-2) обмотки возбуждения возбудителя (ОВВ). СГ – синхронный генератор; ОВГ – обмотка возбуждения генератора; ДСВ – диодный синхронный возбудитель; ДВ – вращающийся диодный выпрямитель; В – обращенный синхронный возбудитель и его обмотка возбуждения ОВВ; ТВ-1, ТВ-2 – тиристорные выпрямители первого и второго канала для питания ОВВ; ВТ-1, ВТ-2 – выпрямительные трансформаторы первого и второго каналов; АРВ-1, АРВ-2 – автоматические регуляторы возбуждения первого и второго каналов; Р1, Р2, Р3, Р4 – разъединители; ТТ1, ТТ2, ТН1, ТН2 – измерительные трансформаторы тока и напряжения первого и второго каналов; ТА11, ТА12 – датчики тока возбуждения возбудителя; АГП – автомат гашения поля; ТР – тиристорный разрядник.

Система бесщеточная диодная (СБД)

Рис.5.6. Система бесщеточная диодная (СБД) возбуждения дизель-генератора. СГ – синхронный дизель-генератор; ОВГ – обмотка возбуждения; ДВ – диодный выпрямитель; Т – тиристор; АРВ – автоматический регулятор возбуждения; ИТТ, ИТН – измерительные трансформаторы тока и напряжения; ТСТ с МШ – трехобмоточный суммирующий трансформатор с магнитным шунтом.

Бесщеточная диодная система возбуждения (СБД) обладает меньшим быстродействием по сравнению с тиристорными системами (СТС и СТН). Так, время нарастания напряжения возбуждения до максимального значения при уменьшении напряжения прямой последовательности в точке регулирования на 5% от номинального составляет величину не более 50мс, тогда как в тиристорных системах – не более 25 мс.

В схеме на рис.5.4а питание обмотки возбуждения диодного возбудителя осуществляется от магнитоэлектрического подвозбудителя с постоянными магнитами, а в схеме на рис.5.4б – от выпрямительного трансформатора, подключенного у генераторному токопроводу возбужденной машины. В обоих случаях для питания обмотки возбуждения (ОВВ) обращенного возбудителя (В) используется тиристорный выпрямитель, управляемый системой АРВ.
Система бесщеточная диодная (СБД)

Рис.5.7. Система бесщеточная диодная (СБД) возбуждения дизель-генератора. СГ – синхронный генератор; ОВГ – обмотка возбуждения генератора; ДСВ – диодный синхронный возбудитель; ДВ – вращающийся диодный выпрямитель; В – обращенный синхронный возбудитель; ОВВ – обмотка возбуждения возбудителя; ПВ – магнитоэлектрический подвозбудитель с постоянными магнитами; АРВ – автоматический регулятор возбуждения; ТВ – тиристорный выпрямитель для питания ОВВ.

Как один из современных вариантов схемы рис.5.4б с выпрямительным трансформатором (ВТ) на рис.5.5 представлена бесщеточная диодная система (СБД) с тиристорным питанием по двум каналам (от сети СН через ВТ-2 и от токопровода генератора через ВТ-1) обмотки возбуждения возбудителя (ОВВ).

Системы возбуждения для дизель-генераторов

АО “Электросила” является производителем дизель-генераторов мощностью от 200 до 6300 кВт с широким спектром напряжений и частот вращения. Для дизель-генераторов изготавливаются два типа систем возбуждения: паундированием, реализованная на базе трехобмоточного суммирующего трансформатора с магнитным шунтом и управляемого тиристорно-диодного преобразователя представлена на рис.5.6. Силовая часть выполнена в виде блока с принудительным охлаждением и размещена на корпусе генератора. Малогабаритный регулятор напряжения устанавливается в щите управления энергоблоком.

Система бесщеточная с диодным синхронным возбудителем (СБД), магнитоэлектрическим подвозбудителем с постоянными магнитами и статическим тиристорным регулятором возбуждения представлена на рис.5.7.

Вращающаяся часть оборудования системы (дизель-генератор, диодный синхронный возбудитель и магнитоэлектрический подвозбудитель) за счетсовмещения конструкции изготавливается в виде компактного блока, установленного на валу генератора.

Регулятор возбуждения размещен в отдельном шкафу. Основные характеристики систем возбуждения дизель-генераторов представлены в таблице 5.1.

Основные характеристики систем возбуждения дизель-генераторов

Таблица 5.1. Основные характеристики систем возбуждения дизель-генераторов. Системы возбуждения дизель-генераторов характеризуются полной автономностью – начальное возбуждение обеспечивается исключительно за счет внутренних источников.

Автоматы гашения поля (АГП)

Автоматы гашения поля предназначены для коммутации цепей обмоток возбуждения турбо- и гидрогенераторов, имеющих контактные кольца на роторе, а также для гашения поля этих машин.

Оптимальные условия для интенсивного снижения тока ротора до нулевого значения обеспечиваются при разряде обмотки возбуждения на нелинейный резистор, сопротивление которого изменяется обратно пропорционально величине тока.

Благодаря специальной конструкции кольцевой дугогасительной решетки автомата гашения поля, горящая в ней дуга обладает вольтамперной характеристикой нелинейного резистора, обеспечивающей минимальное время гашения поля и безопасный уровень напряжения на кольцах ротора. Основные характеристики АГП производства АО “Электросила” представлены в табл.5.2.

Основные характеристики АГП

Понравилась статья? Поделиться с друзьями:
Все об энергетике, электротехнике и электронике
Комментарии: 1
  1. Никита

    Здравствуйте спасибо за ваш труд. Подскажите пожалуйста попросили восстановить генератор,( уже 5 лет разобранный , сказали какие-то мастера приходили забрали деталь сказали сгорела и будут искать такую и пропали, так генератор и стоит) у него на статоре два вида обмоток 1:концы трёх обмоток силовые на выходное напряжение и 2: три конца меньшим сечением просто болтаются ещё с ротора с щёток два провода болтаются я предполагаю что там нужно поставить диодный мост и возможно ещё что-то нужно, дайте совет пожалуйста

Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: