Что такое сумматоры?
Сумматоры — это комбинационные устройства, предназначенные для сложения чисел. Рассмотрим сложение двух одноразрядных двоичных чисел, для чего составим таблицу сложения (таблицу истинности), в которой отразим значения входных чисел А и В, значение результата суммирования S и значение переноса в старший разряд P (см. рис. 3.48).
Цифровые сумматоры
Работа устройства, реализующего таблицу истинность (рис. 3.48), описывается следующими уравнениями
S = А·В + А·В
Р = А·В
Очевидно, что по отношении: к столбцу S реализуется логическая функция «исключающее ИЛИ», т. е. S = А + В.
Поскольку полусумматор имеет только два входа, он может использоваться для суммирования лишь в младшем разряде.
При суммировании двух многоразрядных чисел для каждого разряда (кроме младшего) необходимо использовать устройство, имеющее дополнительный вход переноса. Такое устройство (рис. 3.50) называют полным сумматором и его можно представить как объединение двух полусумматоров (Рвх — дополнительный вход переноса).
Сумматор обозначают через SM.
Цифровые компараторы
Цифровые компараторы выполняют сравнение двух чисел, заданных в двоичном коде. Они могут определять равенство двух двоичных чисел A и B с одинаковым количеством разрядов либо вид неравенства A> B или A < B. Цифровые компараторы имеют три выхода.
Из анализа схемы следует, что если A= B, то F = 1, в противном случае, т. е. при А != В, F = 0. Если А > В, т. е. А = 1, В = 0, то С = 1, а если А < В, т. е. А = 0, В = 1, то D = l.
Если попарно равны между собой все разряды двух n-разрядных двоичных чисел, то равны и эти два числа А и В. Применяя цифровой компаратор для каждого разряда, например, четырехзначных чисел, и определяя значения F1, F2, F3, F4 логических переменных на выходах компараторов, факт равенства А = В установим в случае, когда F = F1 · F2 · F3 · F4 = 1. Если же F = 0, то А != В.
Неравенство А > В обеспечивается (для четырехразрядного числа) в четырех случаях: или А4 > В4, или А4 = В4 и А3 > В3, или А4 = В4, А3 = В3 и А2 > В2, или А4 = В4, А3 = В3, А2 = В2 и A1 > В1 (где А4 и В4 — старшие разряды чисел А и В). Очевидно, что если поменять местами А1 и B1, то будет выполняться неравенство А < В.
Цифровые компараторы выпускают, как правило, в виде самостоятельных микросхем. Так, микросхема К564ИП2 (рис. 3.52) является четырехразрядным компаратором, в котором каждый из одноразрядных компараторов аналогичен рассмотренной ранее схеме. Данная микросхема имеет расширяющие входы А < В, А = В, А > В, что позволяет наращивать разрядность обоих чисел. Для этого компараторы соединяют каскадно или параллельно (пирамидально).