Для контроля за режимом работы электроприемников, а также для производства денежного расчета с энергоснабжающей организацией применяются контрольно-измерительные приборы на подстанциях, присоединяемые к цепям высокого напряжения через измерительные трансформаторы тока и напряжения.
Выбор трансформаторов тока
Трансформаторы тока выбираются по номинальному напряжению, номинальному первичному току и проверяются по электродинамической и термической стойкости к токам короткого замыкания. Особенностью выбора трансформаторов тока является выбор по классу точности и проверка на допустимую нагрузку вторичной цепи.
Классы точности трансформаторов тока
- Трансформаторы тока для присоединения счетчиков, по которым ведутся денежные расчеты, должны иметь класс точности 0,5.
- Для технического учета допускается применение трансформаторов тока класса точности 1;
- Для включения указывающих электроизмерительных приборов — не ниже 3;
- Для релейной защиты — класса 10(Р).
Чтобы погрешность трансформатора тока не превысила допустимую для данного класса точности, вторичная нагрузка Z2 не должна превышать номинальную нагрузку Z2ном, задаваемую в каталогах.
Индуктивное сопротивление таковых цепей невелико, поэтому принимают Z2р = г2р. Вторичная нагрузка г2 состоит из сопротивления приборов г приб, соединительных проводов гпр и переходного сопротивления контактов гк:
Для определения сопротивления приборов, питающихся от трансформаторов тока, необходимо составить таблицу — перечень электроизмерительных приборов, устанавливаемых в данном присоединении.
Суммарное сопротивление приборов, Ом, рассчитывается посуммарной мощности:
В РУ 6—10 кВ применяются трансформаторы с /2ном = 5А; в РУ 110 — 220 кВ — 1 или 5 А. Сопротивление контактов ГК принимают 0,05 Ом при двухтрех приборах и 0,10 — при большем количестве приборов. Сопротивление проводов рассчитывается по их сечению и длине. Для алюминиевых проводов минимальное сечение — 4 мм2; для медных — 2,5 мм2.
Расчетная длина провода зависит от схемы соединения трансформатора тока и расстояния l от трансформатора до приборов:
- при включении трансформаторов тока в неполную звезду;
- 21 — при включении всех приборов в одну фазу;
- l — при включении трансформаторов тока в полную звезду.
При этом длина l может быть принята ориентировочно для РУ 6—10 к В:
- при установке приборов в шкафах КРУ / = 4… 6 м;
- на щите управления /= 30…40 м;
- для РУ 35 кВ / = 45…60 м;
- для РУ ПО — 220 кВ/ = 65…80 м.
Если при принятом сечении провода вторичное сопротивление цепи трансформаторов тока окажется больше ZHOU для заданного класса точности, то необходимо определить требуемое сечение проводов с учетом допустимого сопротивления вторичной цепи:
где р — удельное сопротивление.
Полученное сечение округляется до большего стандартного сечения контрольных кабелей: 2,5; 4; 6; 10 мм2.
Условия выбора трансформатора тока приведены в табл. 7.5. Дополнительно могут быть заданы: КТН = 1т.тн/УР21ном — кратность тока динамической стойкости трансформатора тока; КТ = /Т//|„ОМ — кратность тока термической стойкости; /i„OM — номинальный ток первичной обмотки трансформатора тока.
Выбора трансформаторов напряжения
Трансформаторы напряжения, предназначенные для питания катушек напряжения измерительных приборов и реле, устанавливают на каждой секции сборных шин. Их выбирают по форме исполнения, конструкции и схеме соединения обмоток, номинальному напряжению, классу точности и вторичной нагрузке.
Условия выбора трансформаторов напряжения
- конструкция, схема соединения;
- соблюдение условия Uc.ном = U1ном (где Uc.ном— номинальное напряжение сети, к которой присоединяется трансформатор напряжения, кВ;
- U1.ном— номинальное напряжение первичной обмотки трансформатора, кВ);
- класс точности;
- соблюдение условия S2 рас <S2 ном (где S2 рас— расчетная мощность, потребляемая вторичной цепью, В * A);
- S2 ном— номинальная мощность вторичной цепи трансформатора напряжения, обеспечивающая его работу в заданном классе точности, В*А).
Для однофазных трансформаторов, соединенных в звезду, в качестве U необходимо взять суммарную мощность всех трех фаз, а для соединенных по схеме неполного открытого треугольника — удвоенную мощность одного трансформатора. В выбранном классе точности, если нагрузка (вторичная) превышает номинальную мощность, часть приборов подключают к дополнительно установленному трансформатору напряжения. Вторичная нагрузка ТН — это мощность приборов и реле, подключенных к ТН.
Для упрощения расчетов расчетную нагрузку можно не разделять по фазам, тогда
При определении вторичной нагрузки сопротивление соединительных проводов не учитывается, так как оно мало. Однако ПУЭ требует оценить потерю напряжения, которая в проводах от трансформаторов к счетчикам не должна превышать 0,5 %, а в проводах к щитовым измерительным приборам — 3 %. Сечение провода, выбранное по механической прочности, как правило, отвечает требованиям потерь напряжения.
Выбор типа трансформатора напряжения определяется его назначением. Если от ТН получают питание расчетные счетчики, то целесообразно использовать на напряжениях 6, 10, 35 кВ два однофазных трансформатора типа НОМ или НОЛ, соединенных по схеме открытого неполного треугольника.
Два однофазных ТН обладают большей мощностью, чем один трехфазный, а по стоимости на напряжения 6 и 10 кВ они примерно равноценны. Если одновременно с измерением необходимо производить контроль изоляции в сетях 6—10 кВ, то устанавливают трехфазные трехобмоточные пятистержневые трансформаторы напряжения серии НТМИ или группу из трех однофазных трансформаторов серии ЗНОМ или ЗНОУТ, если мощность НТМИ недостаточна.
При использовании трех однофазных трансформаторов, соединенных в звезду, нейтральная точка обмотки высокого напряжения ТН должна быть заземлена для правильной работы приборов контроля состояния изоляции
Для напряжения 110 кВ и выше применяют каскадные трансформаторы НКФ.
Надежность измерительных трансформаторов напряжения в сетях с изолированной нейтралью
Электрические сети 6-35 кВ Украины и стран СНГ выполнены с изолированной нейтралью. Эти сети при определенных токах замыкания на землю (для Uн=35 кВ – 10 А; Uн=10 кВ – 20 А; Uн=6 кВ – 30 А) должны иметь, как правило, реакторную или резистивную компенсацию нейтрали.
Основным преимуществом сетей с изолированной нейтралью является возможность обеспечивать длительное время потребителей электроэнергией даже при наличии «земли» в сети без их отключения. В то же время одним из основных недостатков является опасность возникновения (при малых токах замыкания на землю, равных 0,5-3,5 А) феррорезонансных процессов с последующим повреждением электромагнитных трансформаторов напряжения (ТН).
Феррорезонансные процессы (ФРП) в таких сетях, как показывает опыт эксплуатации и исследования, проведенные учеными «Львовской политехники», возникают во время появления и обрыва «земли» в сети (срабатывание разрядников, касание ветвями деревьев, обрыв троса фаз ЛЭП, стекание капель росы по изоляторам, особенно загрязненным, некоторым коммутационным переключениям, приводящим к изменению емкости в сети и т.д.).
В большинстве случаев эти ФРП проходят при частотах 17 и 25 Гц и сопровождаются протеканием через первичную обмотку ТН сверхтоков, которые на порядок и больше превышают допустимые для ТН токи, из-за чего первичные обмотки перегорают в течение нескольких минут. В эксплуатации имеют место случаи, когда первоначально по два-три раза (после замены) перегорает высоковольтный предохранитель 35 кВ, рассчитанный на номинальный ток срабатывания 2 А (это при том, что допустимый ток первичной обмотки ТН не превышает 60 мА), при этом повреждается ТН. Таким образом, имеют место неоднократные протекания больших токов через об-мотку ТН сверх допустимых, которые постепенно, за счет перегрева внутренних слоев, приводят к разложению изоляции и повреждению ТН.
В настоящее время, если судить по публикациям российских журналов, проводится большая работа по защите ТН от их повреждений в сетях.
Однако каждый из предлагаемых методов имеет свои недостатки и не в состоянии полностью решить проблему защиты ТН от воздействия ФРП. Кроме того, отсутствует возможность фиксации появления ФРП на участке сети с ТН.
С этой точки зрения наиболее эффективным способом подавления (а главное фиксацией времени и длительности) ФРП является устройство подавления резонанса (УПР), разработанное на кафедре электрических сетей «Львовской политехники», типа ПЗФ-5 (рис. 1, 2).
При возникновении феррорезонанса на выводах обмотки «разомкнутого треугольника» трехфазного ТН (или группы трех однофазных ТН) возникает напряжение нулевой последовательности 3U0 ? 100 В с субгармонической частотой (чаще всего 20-25 Гц).
После появления напряжения с субгармонической частотой устройство ПЗФ-5 с заданной задержкой времени однократно подключает к выводам обмотки «разомкнутого треугольника» резистор 5-6 Ом на время, заданное для гашения ФРП. Подключенный резистор обеспечивает срыв (погашение) феррорезонансных колебаний в течение t ?0,3 с, что исключает возможность термического повреждения обмоток ВН ТН феррорезонансными процессами.
У устройства ПЗФ-5 предусмотрено однократное его включение на заданное время с повторной готовностью к срабатыванию через заданное время. При длительном феррорезонансе предусмотрено повторное однократное срабатывание устройства с последующим запретом (блокированием) импульса гашения вплоть до ликвидации феррорезонанса, после чего устройство снова будет готово к работе. Это обеспечивает термическую стойкость резистора при многократных частых пусках устройства (например, при перемежающей дуге, частыми замыканиями на землю проводов сети ветками деревьев, порывами ветра и т.д.). Устройство формирует архив и отражает на дисплее 5 последних режимов феррорезонанса (срабатываний устройства). В «архиве аварий» устройства накапливается информация о дате и времени возникавших аварийных состояний, что дает эксплуатационным службам дополнительную информацию о состоянии сети в том или ином режиме. По анализу «архива» появляется возможность принять меры по повышению надежности сети в целом.
В настоящее время в системах установлено около 60 УПР. В сетях, где они установлены, информации о повреждениях ТН и неправильной работе ПЗФ не поступало.
Устройство представляет собой металлический ящик размерами 240х185х80 мм, к которому подводится питание ТН 100 В, 50 Гц и напряжение 3U0 от «разомкнутого треугольника», по которому и определяется наличие резонанса в сети. Устройство потребляет не более 10 ВА, устанавливается на панели релейной защиты и может работать при температуре окружающей среды от -55 0С до +60 0С. УПР ПЗФ-5 имеет кнопки вызова – ввода информации (с контролем информации по цифровому индикатору), проверки исправности (тестирования), а также контакты для запуска реле сигнализации при срабатывании (пуске) защиты или потере питания. Масса устройства 3 кг (рис. 3).
ЗАКЛЮЧЕНИЕ
Прибор типа ПЗФ-5 обеспечивает защиту трансформатора напряжения от повреждения при феррорезонансных процессах. Вместе с этим нужно учитывать, что ПЗФ-5 может защитить ТН от повреждения только в том случае, если не менее 60% ТН в электрически связанной сети будет оборудовано устройством защиты от ФРП. Наиболее благоприятными условиями для предотвращения ФРП является оборудование такими устройствами 80-90% ТН в электрически связанной сети. Это необходимо потому, что вывод в ремонт одного ТН, оборудованного устройством ПЗФ, приведет к уменьшению общего процента оборудованных ТН, и условия для предотвращения ФРП соответственно ухудшатся.Разработчики и изготовители ТН, так же как и эксплуатационники, заинтересованы в безаварийной работе ТН и было бы целесообразно провести проверку работы устройства ПЗФ-5 в наиболее проблемных сетях, обобщить опыт работы и на его основе принять окончательное решение о целесообразности применения ПЗФ-5.