В конце 70-х годов прошлого века трансформаторы ОРДУ 135000/500 мощности 135 МВА на напряжение 500 кВ в опытно-промышленной эксплуатации были установлены сначала на Волжской ГЭС, а затем на Волгоградской ГЭС. Эти трансформаторы были спроектированы таким образом, что выбор их главной изоляции производился по допустимому рабочему напряжению. Успешная эксплуатация их открывала перспективу выпуска трансформаторов сверхвысокого напряжения со сниженным уровнем изоляции и, таким образом, большую техникоэкономическую эффективность.
Защита этих трансформаторов от перенапряжений осуществлялась специально разработанными защитными аппаратами с более низким защитным уровнем по отношению к коммутационным и грозовым перенапряжениям по сравнению с промышленно выпускаемыми ограничителями перенапряжений, а именно 720 кВ при расчетном токе грозовой волны.
За время, прошедшее с начала эксплуатации, не было отмечено каких-либо неполадок с этими трансформаторами. В то же время, защитные аппараты требуют замены и модернизации. Положительный опыт эксплуатации данного высоковольтного оборудования предполагает расширение номенклатуры защитных аппаратов данного типа за пределы класса 500 кВ.
Наряду со сказанным следует отметить, что состояние высоковольтного энергетического оборудования в Российской Федерации характеризуется высокой степенью его изношенности. В частности, уровни электрической прочности изоляции силовых трансформаторов на многих подстанциях снижены на 10-20 %. Поскольку современное состояние экономики и электротехнической промышленности не позволяет в массовом порядке проводить ремонты и замены высоковольтного оборудования электрических станций и подстанций, то применение защитных аппаратов со сниженным уровнем ограничения перенапряжений является вполне актуальной проблемой. Применение ограничителей, обеспечивающих более глубокое по сравнению со стандартной защитной аппаратурой ограничение перенапряжений, является для современных условий экономически оправданным решением.
В связи с этим разработка новых ограничителей перенапряжений, обладающих указанным свойством, даже при заметном усложнении их конструкции является целесообразной. Попытка решения указанной научно-технической проблемы была предпринята в ООО «Севзаппром» (г. Санкт-Петербург) совместно со специалистами испытательного центра НИЦ-26, Санкт-Петербургского государственного Политехнического университета и Всероссийского электротехнического института (ВЭИ).
Авторами был разработан искровой модуль, комплектующий модифицированные ограничители перенапряжений на классы напряжений от 110 до 750 кВ, имеющие пониженный уровень ограничения по сравнению с аналогичными аппаратами отечественных и зарубежных производителей. Искровой модуль представляет собой коммутирующее устройство на основе искровых промежутков с магнитным гашением дуги, позволяющее снизить уровень ограничения до 20 % по сравнению с величиной стандартного аппарата путем шунтирования части нелинейного резистора ОПН при достижении заданного уровня напряжения на аппарате. Принципиальная схема ограничителя перенапряжений с искровым модулем представлена на рис. 1. ОПН состоит из колонки последовательно соединенных высоконелинейных сопротивлений варисторов (1). Параллельно части высоконелинейных сопротивлений включаются коммутирующие элементы (2). Количество коммутирующих элементов определятся необходимой величиной дополнительного снижения уровня ограничения напряжения.
Внешний вид ограничителя показан на рис. 2. Под рабочим напряжением и при квазистационарных перенапряжениях модифицированный ОПН работает как стандартный ограничитель перенапряжений. При грозовых и коммутационных воздействиях в момент достижения максимально возможного расчетного уровня перенапряжения срабатывает коммутирующее устройство, отсекающее часть нелинейных сопротивлений, тем самым обеспечивая снижение уровня ограничения на величину падения напряжения на коммутирующем устройстве. В качестве элементов, составляющих коммутирующее устройство, использованы искровые промежутки, при разработке которых за основу была взята конструкция искрового промежутка (ИП) с магнитным гашением дуги, применявшегося ранее в разрядниках типа РВМГ и РВМК. Следует отметить, что производство искровых промежутков для указанных разрядников в России на сегодняшний день прекратилось.
Кроме того, характеристики старых разрядных промежутков, изоляционную основу которых составляет картон, не соответствуют современным требованиям. В частности, эксперименты, проведенные в рамках данной работы, показали неспособность искровых промежутков старого типа коммутировать грозовые импульсы тока с амплитудой 100 кА. Кроме того, в опытах была обнаружена нестабильность геометрии конструкции этих разрядников, проявляющаяся в короблении картона под воздействием различных внешних факторов. В связи с этим потребовалась разработка новых искровых промежутков, лишенных отмеченных недостатков. В качестве изоляционной основы разработанных искровых промежутков использованы современные полимерные материалы, обладающие высокой электрической и механической прочностью. В качестве материала электродов использован специальный сорт латуни с большим содержанием цинка. Положительное влияние цинка связано с тем, что наличие паров цинка в среде, где горит электрическая дуга, приводит к более стабильному ее гашению при переходе тока через нуль. Кроме этого, в процессе экспериментов была несколько изменена форма электродов, что привело к более качественной настройке промежутков и стабилизации их разрядных характеристик.
Разработанные искровые промежутки (рис. 3, 4) обеспечивают высокую стабильность при срабатывании и гашении сопровождающего тока. Стабильность характеристик зажигания последовательно соединенных искровых промежутков достигается путем шунтирования некоторых из них дополнительными емкостями (керамические конденсаторы). Экспериментальная осциллограмма, иллюстрирующая момент зажигания разряда в искровых промежутках и гашения дуги сопровождающего тока, приведена на рис. 4 Для группы искровых промежутков, находящихся под рабочим напряжением (кривая 1), в момент времени, обозначенный на рис. 5 символом A, подается грозовой импульс перенапряжения. После зажигания разряда через искровые промежутки протекает сопровождающий ток. В точке B на рис. 5 происходит гашение дуги, сопровождающий ток через искровые промежутки прекращается. Разброс напряжения срабатывания группы искровых промежутков, установленных на секции ОПНГ, не превосходит 5 % вне зависимости от типа импульса (грозовой или коммутационный).
Более подробно процесс зажигания разряда в искровом промежутке представлен осциллограммами рис. 6, где построены кривые тока в ИП и напряжения на элементарной ячейке шунтированной части нелинейного резистора. Из рис. 6 видно, что срабатывание искрового промежутка происходит при токе через резистор порядка 800 А. При этом напряжение на варисторе падает с десяти до долей киловольт, а ток через искровой промежуток превосходит 3000 А. Секция ОПНГ-500 с установленными на ней коммутирующими элементами показана на рис. 7. Данное техническое решение реализовано при разработке специального ограничителя перенапряжений ОПНГМ-Ф-500 УХЛ1 (см. рис. 2), предназначенного для защиты трансформаторов типа ОРДЦ-135000/500-У1 с пониженной электрической прочностью изоляции, установленных на Волжской ГЭС.
Изготовленный опытный образец ограничителя прошел все квалификационные испытания, предусмотренные ГОСТом на нелинейные ограничители перенапряжений. Кроме того, секция, оборудованная шунтирующими искровыми промежутками, успешно прошла комплекс испытаний, предусмотренных ГОСТом на разрядники, в частности, испытания на дугогасительную способность, а также предусмотренных ГОСТом на нелинейные ограничители перенапряжений. В частности, был проведен полный цикл рабочих испытаний для ОПН на секции резисторов с шунтирующими разрядниками. Таким образом, специализированный защитный аппарат для глубокого ограничения перенапряжений при защите высоковольтного оборудования класса 500 кВ с с пониженным уровнем изоляции подготовлен к серийному производству. Аналогичным образом могут быть разработаны и изготовлены ограничители перенапряжений и для других классов напряжений от 110 до 750 кВ. Для оценки эффекта от применения защитного аппарата типа ОПНГ рассмотрим результаты расчета грозовых перенапряжений для ОРУ тупиковой подстанции 500 кВ, что соответствует наиболее тяжелым воздействиям от набегающих грозовых волн.
В результате анализу подлежат процессы в схеме с одной подходящей ВЛ, одним трансформатором и одним защитным аппаратом, собранными по схеме замещения типа «рогатка» (рис. 8). Пороговое значение тока через ОПН, при котором происходит срабатывание шунтирующих разрядников, было принято равным 0,8 кА. В проведенных расчетах замыкание реализовано с помощью идеального ключа. На практике в течение некоторого периода времени параллельно 1/6 части резистора ОПН будет включено переменное сопротивление, величина которого снижается до некоторого минимального сопротивления. Расчеты проводились волновым методом с помощью программного комплекса «Минск» [2]. Приведенные результаты показывают максимальное возможное снижение перенапряжений в схеме ОРУ.
Воздействие в расчетах представлено косоугольным импульсом с фронтом 0,5-2 мкс и длиной волны 75 мкс. Его можно трактовать как волну, набегающую с ВЛ при прорыве молнии непосредственно на фазный провод при неучете перекрытия линейной изоляции. Причем, для амплитуды 1000 кВ это допущение является справедливым, для 10000 кВ следует ожидать перекрытия и среза набегающей волны, определяемого вольт-секундной характеристикой линейной изоляции и сопротивлением заземления опор. Результаты анализа, кривые напряжения на трансформаторе и ОПН при различных комбинациях параметров воздействия (амплитуда и ширина фронта волны перенапряжения) приведены на рис. 9. На графиках рис. 9 приведены в сравнении кривые перенапряжений при использовании стандартного ОПН, обозначенные «опн полн.», и ОПН с искровым модулем, обозначенные как «ОПН срез». Сводная характеристика перенапряжений при использовании в качестве защитного аппарата стандартного ОПН и ОПН с искровым модулем приведена в таблице. В последней колонке таблицы дано процентное снижение воздействующего на трансформатор напряжения при замене стандартного ОПН на ОПН с искровым модулем. В частности, из таблицы следует, что эффект применения ОПНГ может выражаться в 10-15 % снижении импульсного напряжения, вызываемого грозовыми волнами.
Выводы
1. Разработан специальный ограничитель перенапряжений, обеспечивающий более глубокое ограничение перенапряжений по сравнению с применением стандартного защитного аппарата.
2. ОПН успешно прошел полный комплекс испытаний, предусмотренных государственными стандартами на нелинейные ограничители перенапряжений и разрядники.
3. Анализ перенапряжений в типовых ситуациях защиты силовых трансформаторов от перенапряжений показал эффективность применения представленной разработки.