Усилителем мощности называют усилитель, предназначенный для обеспечения заданной мощности нагрузки Рн при заданном сопротивлении нагрузки RH. Усилитель мощности является примером устройств силовой электроники. Основная цель при разработке таких устройств состоит в том, чтобы отдать нагрузке заданную мощность.
В противоположность устройствам силовой электроники при проектировании устройств информативной (информационной) электроники основная цель состоит в том, чтобы выполнить заданную обработку сигнала и получить выходные сигналы, содержащие ту или иную информацию о входных.
Реальное устройство может содержать черты как силовой, так и информативной электроники, но об указанном различии следует постоянно помнить. Необходимо отметить, что функции устройств информативной электроники все чаще берут на себя микропроцессоры. Но микропроцессоры, естественно, не в состоянии выполнять функции устройств силовой электроники.
На усилитель мощности, как правило, приходится подавляющая часть мощности, потребляемая тем устройством, составной частью которого он является. Поэтому всемерное внимание уделяется повышению коэффициента полезного действия усилителя мощности.
Другой важной проблемой является уменьшение габаритных размеров и веса усилителя мощности, так как они часто определяют габаритные размеры и вес всего устройства. Проблемы повышения коэффициента полезного действия и уменьшения габаритных размеров тесно связаны, потому что габаритные размеры и вес усилителя сильно зависят от габаритных размеров и веса охладителей. Чем больше коэффициент полезного действия, тем меньше габаритные размеры и вес усилителя.
Уровень нелинейных искажений и КПД усилителя мощности существенно зависят от начального режима работы, причем нелинейные искажения обусловливаются нелинейностью не только входных, но и выходных характеристик транзисторов, так как они работают в режиме большого сигнала. Минимально возможный уровень нелинейных искажений можно обеспечить в режиме класса «А», а максимально возможный КПД — в режиме классов «В» или «АВ».
Усилители мощности бывают однотактные и двухтактные, причем первые работают в режиме класса «А», а вторые — в режиме классов «В» или «АВ». Однотактные усилители мощности применяются при относительно малых выходных мощностях (единицы ватт).
В соответствии с требованием обеспечить заданную мощность нагрузки Рн при разработке усилителя мощности должен быть решен вопрос о соответствующем выборе напряжения питания усилителя Е. Предположим, что усилитель с указанным напряжением питания может создать на нагрузке синусоидальный сигнал с максимально возможной амплитудой напряжения
Тогда максимально возможная мощность нагрузки Рн max определится выражением Рн max = ( Um / ?2 )2 · 1 / R н = Um2 / ( 2 · R н ) = E2 / ( 8 · R н )
Откуда Um = E / 2 E = 2 · ? ( Рн max · R н · 2 )
Если по каким-либо причинам выбрать полученное значение Е не представляется возможным, для согласования усилителя и нагрузки можно использовать трансформатор. Однако трансформатор часто является нежелательным элементом усилителя мощности, так как это сравнительно дорогое и сложное в изготовлении устройство.
Рассмотрим согласование нагрузки и усилителя с помощью трансформатора (рис. 2.39).
Через W1 и W2 обозначено соответственно количество витков первичной и вторичной обмоток трансформатора, а через uвых и Rвых — соответственно выходное напряжение и выходное сопротивление усилителя.
При определении мощности нагрузки эту схему можно заменить эквивалентной схемой, приведенной на рис. 2.40.
В ней через R?н обозначено приведенное сопротивление нагрузки R?н = Rн / n 2 где n — коэффициент трансформации (n = W2 / W1 ).
Изменяя коэффициент трансформации, можно добиться необходимого согласования усилителя и нагрузки, причем известно, что максимальная мощность в нагрузку отдается при Rвых = R?н. Отсюда определим оптимальное значение коэффициента трансформации:
n опт = ? ( Rн / Rвых )